If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-64x-16=0
a = 5; b = -64; c = -16;
Δ = b2-4ac
Δ = -642-4·5·(-16)
Δ = 4416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4416}=\sqrt{64*69}=\sqrt{64}*\sqrt{69}=8\sqrt{69}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-8\sqrt{69}}{2*5}=\frac{64-8\sqrt{69}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+8\sqrt{69}}{2*5}=\frac{64+8\sqrt{69}}{10} $
| 2(w+5)=4 | | -1/3=-3/7x+1/2 | | 36=44-u | | 30x^2+20x=0 | | 40=29=w | | 23=32-u | | 0.50x+0.25(70)=46.5 | | n^2=8n=-15 | | 5m+6=30-4 | | 3x-1.4=22.6 | | 5(3n+1)=6(6n+5)+2= | | (x*19*5)+(x*8*4)=562.45 | | (x(19*5))+(x(8*4))=562.45 | | x(19*5)+x(8*$)=562.45 | | (x(19*5))+(x(8*$))=562.45 | | 2/3x-1/4=59 | | a+6.84=+21.9 | | 3n+2n+5n=50+10 | | 12y-10=2 | | (x+2)/5x=-3/7 | | (x*19)+(x*8)=562.45 | | 3v^2+5=-8v | | 9.7x=+79.54 | | 14x×4=18 | | 3x+1=x2 | | 9n2+79=-18n | | 9n^2+79=−18n | | 60-x-9=8+x-2 | | (5/x-5)+4=(x/x-5) | | 5-x-3=2+x-1/12 | | -2+3x+8=-32x-28+5 | | 5-x-3/4=2/3+x-1/6 |